Достоинства САПР

Механизация.инжегерная графика

. Достоинства сапр
Сейчас термином САПР обозначают процесс проектирования с использованием сложных средств машинной графики, поддерживаемых пакетами прикладных программ для решения на компьютерах аналитических, квалификационных, экономических и эргономических проблем, связанных с проектной деятельностью.

Достоинства САПР:

1. Более быстрое выполнение чертежей (до 3 раз). Дисциплина работы с использованием САПР ускоряет процесс проектирования в целом, позволяет в сжатые сроки выпускать продукцию и быстрее реагировать на изменение рыночных конъектур.

2. Повышение точности выполнения. На чертежах, построенных с помощью системы САПР, место любой точки определено точно, а для увеличения достаточного просмотра элементов есть средство, называемое наезд, или zooming, позволяющее увеличивать или уменьшать любую часть данного чертежа в любое число раз. На изображение, над которым выполняется наезд, не накладывается практически никаких ограничений.

3. Повышение качества;

4. Возможность многократного использования чертежа. Запомненный чертеж может быть использован повторно для проектирования, когда в состав чертежа входит ряд компонентов, имеющих одинаковую форму. Память компьютера является также идеальным средством хранения библиотек, символов, стандартных компонентов и геометрических форм.

5. САПР обладает чертежными средствами (сплайны, сопряжения, слои).

6. Ускорение расчетов и анализа при проектировании. В настоящее время существует большое разнообразие ПО, которое позволяет выполнять на компьютерах часть проектных расчетов заранее. Мощные средства компьютерного моделирования, например, метод конечных элементов, освобождают конструктора от использования традиционных форм и позволяют проектировать нестандартные геометрические формы.

7. Понижение затрат на обновление. Средства анализа и имитации в САПР, позволяют резко сократить затраты времени и денег на тестирование и усовершенствование прототипов, которые являются дорогостоящими этапами процесса проектирования;

8. Большой уровень проектирования. Мощные средства, комплексного моделирования. Возможность проектирования нестандартных геометрических форм, которые быстро оптимизируются;

9. Интеграция проектирования с другими видами деятельности. Интегрируемые вычислительные средства обеспечивают САПР более тесное взаимодействия с инженерными подразделениями.

Глава II. Классификация и обозначение
1. Структура сапр.
Как и любая сложная система, САПР состоит из подсистем (рис. 1.1). Различают подсистемы проектирующие и обслуживающие.

Рис 1.1. Структура программного обеспечения САПР

Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.

Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными (PDM — Product Data Management), управления процессом проектирования (DesPM — Design Process Management), пользовательского интерфейса для связи разработчиков с ЭВМ, CASE (Computer Aided Software Engineering) для разработки и сопровождения программного обеспечения САПР, обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.

Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:

— техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);

— математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;

— программное (ПО), представляемое компьютерными программами САПР;

— информационное (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также других данных, используемых при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, а БД вместе с СУБД носит название банка данных (БнД);

— лингвистическое (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;

— методическое (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;

— организационное (ОО), представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.

Теперь кратко разберёмся с назначением каждого компонента средств САПР.

Математическое обеспечение САПР. Основа — это алгоритмы, по которым разрабатывается программное обеспечение САПР. Среди разнообразных элементов математического обеспечения имеются инвариантные элементы-принципы построения функциональных моделей, методы численного решения алгебраических и дифференциальных уравнений, постановки экстремальных задач, поиски экстремума. Разработка математического обеспечения является самым сложным этапом создания САПР, от которого в наибольшей степени зависят производительность и эффективность функционирования САПР в целом.

Программное обеспечение САПР. Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делиться на общесистемное и специальное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т. е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специальном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР. Основу составляют данные, которыми пользуются проектировщики в процессе проектирования непосредственно для выработки проектных решений. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений.

Техническое обеспечение САПР. Это создание и использование ЭВМ, графопостроителей, оргтехники и всевозможных технических устройств, облегчающих процесс автоматизированного проектирования.

Лингвистическое обеспечение САПР. Основу составляют специальные языковые средства (языки проектирования), предназначенные для описания процедур автоматизированного проектирования и проектных решений. Основная часть лингвистического обеспечения — языки общения человека с ЭВМ.

Методическое обеспечение САПР. Под методическим обеспечением САПР понимают входящие в её состав документы, регламентирующие порядок ее эксплуатации. Причем документы, относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Так в основном документы методического обеспечения носят инструктивный характер, и их разработка является процессом творческим.

Организационное обеспечение САПР. Этот пункт предписывает комплектование подразделений САПР проффесионально грамотными специалистами, имеющими навыки и знания для работы с перечисленными выше компонентами САПР. От их работы будет зависеть эффективность и качество работы всего комплекса САПР (может даже всего производства).

Следующая >< Предыдущая Стр 3 из 11 ₽

Достоинства САПР

Механизация.инжегерная графика

. Достоинства сапр
Сейчас термином САПР обозначают процесс проектирования с использованием сложных средств машинной графики, поддерживаемых пакетами прикладных программ для решения на компьютерах аналитических, квалификационных, экономических и эргономических проблем, связанных с проектной деятельностью.

Достоинства САПР:

1. Более быстрое выполнение чертежей (до 3 раз). Дисциплина работы с использованием САПР ускоряет процесс проектирования в целом, позволяет в сжатые сроки выпускать продукцию и быстрее реагировать на изменение рыночных конъектур.

2. Повышение точности выполнения. На чертежах, построенных с помощью системы САПР, место любой точки определено точно, а для увеличения достаточного просмотра элементов есть средство, называемое наезд, или zooming, позволяющее увеличивать или уменьшать любую часть данного чертежа в любое число раз. На изображение, над которым выполняется наезд, не накладывается практически никаких ограничений.

3. Повышение качества;

4. Возможность многократного использования чертежа. Запомненный чертеж может быть использован повторно для проектирования, когда в состав чертежа входит ряд компонентов, имеющих одинаковую форму. Память компьютера является также идеальным средством хранения библиотек, символов, стандартных компонентов и геометрических форм.

5. САПР обладает чертежными средствами (сплайны, сопряжения, слои).

6. Ускорение расчетов и анализа при проектировании. В настоящее время существует большое разнообразие ПО, которое позволяет выполнять на компьютерах часть проектных расчетов заранее. Мощные средства компьютерного моделирования, например, метод конечных элементов, освобождают конструктора от использования традиционных форм и позволяют проектировать нестандартные геометрические формы.

7. Понижение затрат на обновление. Средства анализа и имитации в САПР, позволяют резко сократить затраты времени и денег на тестирование и усовершенствование прототипов, которые являются дорогостоящими этапами процесса проектирования;

8. Большой уровень проектирования. Мощные средства, комплексного моделирования. Возможность проектирования нестандартных геометрических форм, которые быстро оптимизируются;

9. Интеграция проектирования с другими видами деятельности. Интегрируемые вычислительные средства обеспечивают САПР более тесное взаимодействия с инженерными подразделениями.

Глава II. Классификация и обозначение
1. Структура сапр.
Как и любая сложная система, САПР состоит из подсистем (рис. 1.1). Различают подсистемы проектирующие и обслуживающие.

Рис 1.1. Структура программного обеспечения САПР

Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.

Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными (PDM — Product Data Management), управления процессом проектирования (DesPM — Design Process Management), пользовательского интерфейса для связи разработчиков с ЭВМ, CASE (Computer Aided Software Engineering) для разработки и сопровождения программного обеспечения САПР, обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.

Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:

— техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);

— математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;

— программное (ПО), представляемое компьютерными программами САПР;

— информационное (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также других данных, используемых при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, а БД вместе с СУБД носит название банка данных (БнД);

— лингвистическое (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;

— методическое (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;

— организационное (ОО), представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.

Теперь кратко разберёмся с назначением каждого компонента средств САПР.

Математическое обеспечение САПР. Основа — это алгоритмы, по которым разрабатывается программное обеспечение САПР. Среди разнообразных элементов математического обеспечения имеются инвариантные элементы-принципы построения функциональных моделей, методы численного решения алгебраических и дифференциальных уравнений, постановки экстремальных задач, поиски экстремума. Разработка математического обеспечения является самым сложным этапом создания САПР, от которого в наибольшей степени зависят производительность и эффективность функционирования САПР в целом.

Программное обеспечение САПР. Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делиться на общесистемное и специальное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т. е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специальном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР. Основу составляют данные, которыми пользуются проектировщики в процессе проектирования непосредственно для выработки проектных решений. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений.

Техническое обеспечение САПР. Это создание и использование ЭВМ, графопостроителей, оргтехники и всевозможных технических устройств, облегчающих процесс автоматизированного проектирования.

Лингвистическое обеспечение САПР. Основу составляют специальные языковые средства (языки проектирования), предназначенные для описания процедур автоматизированного проектирования и проектных решений. Основная часть лингвистического обеспечения — языки общения человека с ЭВМ.

Методическое обеспечение САПР. Под методическим обеспечением САПР понимают входящие в её состав документы, регламентирующие порядок ее эксплуатации. Причем документы, относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Так в основном документы методического обеспечения носят инструктивный характер, и их разработка является процессом творческим.

Организационное обеспечение САПР. Этот пункт предписывает комплектование подразделений САПР проффесионально грамотными специалистами, имеющими навыки и знания для работы с перечисленными выше компонентами САПР. От их работы будет зависеть эффективность и качество работы всего комплекса САПР (может даже всего производства).

Следующая >< Предыдущая Стр 3 из 11 ₽

Достоинства САПР

Механизация.инжегерная графика

. Достоинства сапр
Сейчас термином САПР обозначают процесс проектирования с использованием сложных средств машинной графики, поддерживаемых пакетами прикладных программ для решения на компьютерах аналитических, квалификационных, экономических и эргономических проблем, связанных с проектной деятельностью.

Достоинства САПР:

1. Более быстрое выполнение чертежей (до 3 раз). Дисциплина работы с использованием САПР ускоряет процесс проектирования в целом, позволяет в сжатые сроки выпускать продукцию и быстрее реагировать на изменение рыночных конъектур.

2. Повышение точности выполнения. На чертежах, построенных с помощью системы САПР, место любой точки определено точно, а для увеличения достаточного просмотра элементов есть средство, называемое наезд, или zooming, позволяющее увеличивать или уменьшать любую часть данного чертежа в любое число раз. На изображение, над которым выполняется наезд, не накладывается практически никаких ограничений.

3. Повышение качества;

4. Возможность многократного использования чертежа. Запомненный чертеж может быть использован повторно для проектирования, когда в состав чертежа входит ряд компонентов, имеющих одинаковую форму. Память компьютера является также идеальным средством хранения библиотек, символов, стандартных компонентов и геометрических форм.

5. САПР обладает чертежными средствами (сплайны, сопряжения, слои).

6. Ускорение расчетов и анализа при проектировании. В настоящее время существует большое разнообразие ПО, которое позволяет выполнять на компьютерах часть проектных расчетов заранее. Мощные средства компьютерного моделирования, например, метод конечных элементов, освобождают конструктора от использования традиционных форм и позволяют проектировать нестандартные геометрические формы.

7. Понижение затрат на обновление. Средства анализа и имитации в САПР, позволяют резко сократить затраты времени и денег на тестирование и усовершенствование прототипов, которые являются дорогостоящими этапами процесса проектирования;

8. Большой уровень проектирования. Мощные средства, комплексного моделирования. Возможность проектирования нестандартных геометрических форм, которые быстро оптимизируются;

9. Интеграция проектирования с другими видами деятельности. Интегрируемые вычислительные средства обеспечивают САПР более тесное взаимодействия с инженерными подразделениями.

Глава II. Классификация и обозначение
1. Структура сапр.
Как и любая сложная система, САПР состоит из подсистем (рис. 1.1). Различают подсистемы проектирующие и обслуживающие.

Рис 1.1. Структура программного обеспечения САПР

Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.

Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными (PDM — Product Data Management), управления процессом проектирования (DesPM — Design Process Management), пользовательского интерфейса для связи разработчиков с ЭВМ, CASE (Computer Aided Software Engineering) для разработки и сопровождения программного обеспечения САПР, обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.

Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:

— техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);

— математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;

— программное (ПО), представляемое компьютерными программами САПР;

— информационное (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также других данных, используемых при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, а БД вместе с СУБД носит название банка данных (БнД);

— лингвистическое (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;

— методическое (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;

— организационное (ОО), представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.

Теперь кратко разберёмся с назначением каждого компонента средств САПР.

Математическое обеспечение САПР. Основа — это алгоритмы, по которым разрабатывается программное обеспечение САПР. Среди разнообразных элементов математического обеспечения имеются инвариантные элементы-принципы построения функциональных моделей, методы численного решения алгебраических и дифференциальных уравнений, постановки экстремальных задач, поиски экстремума. Разработка математического обеспечения является самым сложным этапом создания САПР, от которого в наибольшей степени зависят производительность и эффективность функционирования САПР в целом.

Программное обеспечение САПР. Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делиться на общесистемное и специальное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т. е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специальном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР. Основу составляют данные, которыми пользуются проектировщики в процессе проектирования непосредственно для выработки проектных решений. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений.

Техническое обеспечение САПР. Это создание и использование ЭВМ, графопостроителей, оргтехники и всевозможных технических устройств, облегчающих процесс автоматизированного проектирования.

Лингвистическое обеспечение САПР. Основу составляют специальные языковые средства (языки проектирования), предназначенные для описания процедур автоматизированного проектирования и проектных решений. Основная часть лингвистического обеспечения — языки общения человека с ЭВМ.

Методическое обеспечение САПР. Под методическим обеспечением САПР понимают входящие в её состав документы, регламентирующие порядок ее эксплуатации. Причем документы, относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Так в основном документы методического обеспечения носят инструктивный характер, и их разработка является процессом творческим.

Организационное обеспечение САПР. Этот пункт предписывает комплектование подразделений САПР проффесионально грамотными специалистами, имеющими навыки и знания для работы с перечисленными выше компонентами САПР. От их работы будет зависеть эффективность и качество работы всего комплекса САПР (может даже всего производства).

Следующая >< Предыдущая Стр 3 из 11 ₽

Второй закон термодинамики

Механизация.теплотехника

Второй закон термодинамики. Энтропия. — таблицы Tehtab.ru
Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики :

Кельвина и Планка

Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

Клаузиуса
Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

Второй закон связан с понятием энтропии (S).

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии — стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

100% энергии не может быть преобразовано в работу
Энтропия может вырабатываться, но не может быть уничтожена
Эффективность теплового двигателя
Эффективность теплового двигателя, действующего между двумя энергетическими уровнями , определена в пересчете на абсолютные температуры

η = ( Th — Tc ) / Th = 1 — Tc / Th

где

η = эффективность

Th = верхняя граница температуры (K)

Tc = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности Tc должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, Tc должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

Изменение энтропии > 0
Необратимый процесс
Изменение энтропии= 0
Двусторонний процесс (обратимый)
Изменение энтропии < 0 Невозможный процесс (неосуществимый) Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается. Определение энтропии Энтропия определяется как : S = H / T где S = энтропия (кДж/кг*К) H = энтальпия (кДж/кг) T = абсолютная температура (K) Изменение энтропии системы вызвано изменением содержания темпла в ней. Изменение энтропии равно изменению темпла системы деленной на среднюю абсолютную температуру ( Ta): dS = dH / Ta Сумма значений (H / T) для каждого полного цикла Карно равна 0. Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H. Тепловой цикл Карно Цикл Карно— идеальный термодинамический цикл. Цикл Карно в координатах PVЦикл Карно в координатах TS В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая: Положение 1 --( изотермическое расширение) --> Положение 2 —( адиабатическое расширение) —> Положение 3 —(изотермическое сжатие) —> Положение 4 —(адиабатическое сжатие) —> Положение 1

Положение 1 — Положение 2: Изотермическое расширение
Изотермическое расширение. В начале процесса рабочее тело имеет температуру Th , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается. QH=∫Tds=Th (S2-S1) =Th ΔS
Положение 2 — Положение 3: Адиабатическое расширение
Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Положение 3 — Положение 4: Изотермическое сжатие
Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру Tc, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Qc. Qc=Tc(S2-S1)=Tc ΔS
Положение 4 — Положение 1: Адиабатическое сжатие
Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики — это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0.

Энтропия адиабатически изолированной системы не меняется!
Пример — Энтропия при нагревании воды

Процесс нагревания 1 кг воды от 0 до 100oC (273 до 373 K) при нормальных условиях.

Удельная энтальпия для воды при 0oC = 0 кДж/кг (удельная — на единицу массы)

Удельная энтальпия для воды при 100oC = 419 кДж/кг

Изменение удельной энтропии :

dS = dH / Ta

= ((419 кДж/кг) — (0 кДж/кг)) / ((273 К + 373 К)/2)

= 1.297 кДж/кг*К

Пример — Энтропия при испарении воды

Процесс превращения 1 кг воды при 100oC (373 K) в насыщенный пар при 100oC (373 K) при нормальных условиях.

Удельная энтальпия пара при 100oC (373 K) до испарения = 0 кДж/кг

Удельная теплота парообразования 100oC (373 K) при испарении = 2 258 кДж/кг

Изменение удельной энтропии:

dS = dH / Ta

= (2 258 — 0) / ((373 + 373)/2)

= 6.054 кДж/кг*К

Полное изменение удельной энтропии испарения воды — это сумма удельной энтропии воды (при 0oC) плюс удельная энтропия пара (при температуре 100oC).

Дополнительная информация от TehTab.ru:
Вы сейчас здесь: Второй закон термодинамики. Энтропия.

Первый закон термодинамики

Механизация.гидравлика

Первый закон термодинамики
Первый закон термодинамики — есть закон сохранения энергии: при любых физических взаимодействиях энергия не возникает и не исчезает, а только передается от одних тел другим или превращается из одной формы в другую.

Общая форма закона сохранения и превращения энергии имеет вид

Но изучая тепловые процессы, мы будем рассматривать формулу
Согласно первому закону термодинамики, изменение внутренней энергии термодинамической системы при переходе из одного состояние в другое равно сумме работы, выполненной внешними силами, и количества теплоты, переданной системе извне

Сформулировать первый закон термодинамики можно иначе: количество теплоты, получаемое системой извне при ее переходе из одного состояния в другое, расходуется на повышение внутренней энергии системы и на работу, которую она выполняет против внешних сил

Например, вы кипятите чайник с водой. Количество тепла расходуется на их нагревание (увеличивается энергия частиц, то есть внутренняя энергия системы), а затем происходит приподнимание крышки — это работа, которую выполняет система.

Внешняя работа над системой равна работе системы, но с противоположным знаком

Адиабатический (адиабатный) процесс
Процесс при тепловой изоляции системы от окружающей среды, то есть

Изменение внутренней энергии происходит только за счет работы внешних сил. Или совершаемая системой работа происходит за счет убыли внутренней энергии.

Практически все реальные процессы происходят с теплообменом: адиабатические процессы — это редкое исключение.

Первый закон термодинамики для изопроцессов
При изотермическом процессе температура не изменяется, значит не изменяется внутренняя энергия

Первый закон принимает вид

Все количество теплоты, которую получает газ расходуется на выполнение им работы против внешних сил. Или, если газ сжимается, при этом не изменяется температура, работу выполняют внешние силы, а газ отдает некоторое количество теплоты в окружающую среду.

При изохорном процессе объем не изменяется, значит работа нулевая

Первый закон термодинамики принимает вид

В этом случае

Если газ изохорно охлаждается, его внутренняя энергия уменьшается, и он отдает теплоту в окружающую среду.

При изобарном процессе первый закон термодинамики имеет общий вид

Здесь справедливы формулы

Система автоматизированного проектирования

Механизация

что такое системы автоматизированного проектирования, история создания, программное обеспечение для САПР, состав и структура, виды и области применения
Редкий инженер предпочитает бумажные чертежи электронным. Старый дедовский способ занимает гораздо больше времени и допускает погрешности в построении и расчетах. Поэтому большинство предприятий перешли на компьютерные технологии. Расходы на установку систем и обучение сотрудников полностью окупилось результативностью и качеством работы с компьютером. К тому же, такой подход позволяет вести всю документацию в цифровом виде и обеспечивает удобство сообщения с другими компаниями и дочерними предприятиями.

Чтобы понять, что такое САПР и для чего он нужен в работе, узнаем, как расшифровывается аббревиатура программы – это система автоматизированного проектирования. В этой статье мы узнаем, как появилось и развивалось это программное обеспечение, какие возможности оно открывает для конструирования, и чем отличаются его разновидности.

История создания САПР
Англоязычный вариант названия – CAD, то есть Computer Aided Design. Изначально разработчики добивались плотного взаимодействия человеческих ресурсов и возможностей электронно-вычислительных машин. Путь достижения этой цели короток – существование платформ не длится и полвека. Условно весь период развития можно разбить на три части:

1970-е годы. В это время появилась уверенность, что проектирование теоретически подвергается компьютеризации. Сфера деятельности машины была невелика, в основном упор делался на возможности автоматического черчения. Такие программы получили название САЧ.
1980-е годы ознаменовались появлением микрокомпьютеров, поэтому все силы уходили на создание систем для них. Также этот период положил начало объемному 3D-моделированию с возможностью передачи данных.
1990-е годы окончили формирование базовых понятий САПРа и устранения ошибок и погрешностей. В частности, было убрано препятствие при передаче файла в одном формате на другую компьютерную систему. Когда производители пришли к единому образцу, применение платформы стало доступнее и популярнее.
С тех пор создатели только совершенствуют модели, укомплектовывают новыми функциями и облегчают работу с ними.

САПР программы
Можно назвать следующие ступени эволюции программы:
работа с радиотехникой и электроникой на примитивном уровне в США, 50-е – начало 60-х годов;
схематическое конструирование радиоэлектроники и интегральных схем в СССР, 60-е годы;
первый шаг в развитии автоматизированного машиностроения – создание графической системы «Sketchpad» ученым Сазерлендом в 1963 г.;
появление кривых линий и моделей неправильной формы – 1970 г.;
в 1982 году увидел свет первый продукт компании «Autodesk» – AutoCAD, ставший первым и самым популярным САПРом для инженера.
С этого момента все производители программного обеспечения пытаются превзойти по качеству первоначальный вариант, нужно отметить, что качество некоторых аналогов Автокада уже завоевало почетное место на компьютерном рынке. Альтернативой распространенной платформе является продукт компании ZWSOFT – ZWCAD. Это новейшие технологии в сочетании с классикой систем автоматического проектирования: удобный дизайн, совместимость с форматами других программ, широкие возможности расчета, конструирования и проверки продукта в работе. Невысокая цена в сочетании с отличным качеством делает платформу востребованной во всем мире, тем более, что она переведена на многие языки. Компания предлагает возможность бесплатно протестировать пробный пакет, тем самым давая инженерам шанс «распробовать» аналог Автокада.
Мы много говорили о пользе автоматического проектирования, в чем именно она состоит?

ZWCAD Standard
Возможности и области применения САПР
Основная цель разработки платформы – это повышение эффективности труда инженеров с помощью обеспечения взаимодействия с электронно-вычислительными машинами. Оно достигается следующими факторами:

облегчается процесс конструирования для сотрудников всех отраслей;
уменьшаются сроки завершения проектов в целом;
сокращается начальная стоимость работы проектирования за счет устранения издержек и оплаты многочасового труда работников;
улучшается качество готового продукта и каждого отдельного этапа;
практически убирается статья расходов на тестирование изделий и устранение погрешностей.
Такой результат достигается за счет ряда достоинств автоматизации:
обширная и доступная информационная база, заложенная в структуре программы;
автоматический сбор и классификация всех сопутствующих документов;
возможность системы параллельного конструирования и, соответственно, предоставления объема работ на текущий момент моделирования;
заложенная в программе библиотека готовых решений;
режим проверки и испытаний готового продукта путем математического моделирования;
подбор и предложение максимально выгодных методов моделирования при минимизации расходов;
сбор и классификация информации для наиболее выгодного управления предприятием.
САПР программа для проектирования ZWSOFT

Состав и структура САПР
Это обширная система, которая, не смотря на перевод, не полностью соответствует аббревиатуре CAD. В русскоязычный термин входят три базовых понятия:

CAE (Computer-aided engineering) – программа инженерного анализа, осуществляющая расчет данных.
CAD (Computer-Aided Design) – этап собственно проектирования и построения схем.
CAM (Computer-aided manufacturing) – модуль по управлению результатами деятельности двух предыдущих устройств.
На деле все три технологии взаимодействуют и дают возможности в одной программе осуществлять полный цикл конструирования объектов любой сложности.

Для создания САПРа были привлечены технологии из разных сфер:

основы телекоммуникаций;
методы вычислительных сетей;
широкое математическое обеспечение: от способов вычисления и статистики до элементов искусственного разума;
компьютерные технологии для обслуживания популярных операционных систем и основных языков программирования.
Система автоматизированного проектирования САПР – это программа, которая базируется на двух основных подсистемах: проектирование и обслуживание. С помощью первой осуществляется само построение схем, чертежей. Вторая служит для управления первой.

Вот основные составляющие модули:

Построение двумерных систем и геометрическое 3D-моделирование.
DesPM – Design Process Management – управление процессом конструирования.
PDM — Product Data Management – организация и оптимизация заложенных данных.
Диалоговый модуль – дает возможность эффективного общения пользователя с программой.
Совокупность технических средств – измерительные приборы и инвентарь для построения.
Математическая база, включающая в себя алгоритмы решения проблем и функции преображения данных.
Информационное обеспечение – энциклопедический набор знаний, к которому имеет доступ пользователь.
Языковая надстройка с возможностью перевода текста.
Базовая совокупность средств, необходимых при стандартных ситуациях проектирования.
Классификация САПР
Можно разделять все виды программ согласно следующим критериям:

по отраслевому назначению;
по цели использования;
по масштабам;
по форме основной подсистемы.
Разновидности ПО в зависимости от отрасли
MCAD – mechanical CAD – это сфера машиностроения любой сложности: от ракетных установок и автомобилей до примитивного тостера;
EDA или electronic CAD – это группа радиоэлектронных разработок, необходимая для разработки как целого проекта, так и его элементов: микросхем, плат и других деталей.
AEC СAD или CAAD – программное обеспечение для архитекторов и строителей. Используется для возведения зданий, строительства дорог и элементов инфраструктуры любой сложности.
Классификация по цели использования

Она повторяет три составляющих классического САПРа:

CAD – отвечает за проектирование и создание чертежей;
CAE – модуль для автоматических подсчетов и аналитических процессов;
CAM – подготовка производства и управление всей системой.
Они могут быть как воплощены в раздельных платформах, так и объединены в одной – это комбинированные программы. Также возможны надстройки с соответствующими функциями на базовой комплектации.

САПР программы для 3D моделирования
Отличия платформы по масштабу комплектации
Есть три типа, они характеризуются расположением от простого к сложному:

Нижний уровень отвечает за конструкторскую документацию. Используется в различных сферах деятельности, когда нужно подготовить отчетную смету.
Средний уровень отличается повышенным контролем за отчетность и возможностью построения 3D-моделей.
Высший уровень обеспечивает наиболее широкий спектр возможностей, сопровождая процесс создания изделия любой сложности от расчетных манипуляций до момента тестирования.
Виды программного обеспечения САПР по характеру базовой комплектации
На основе технической графической методики, двумерного и объемного моделирования. Они настроены на использование с целью проектирования объектов и взаимного расположения элементов схемы. Применяются в большинстве случаев в машиностроении.
На Системе Управления Базой Данных. Такие платформы ориентированы на математические расчеты, использование формул и алгоритмов, оперирование большим количеством информации. Чаще всего используются для создания бизнес-проектов и экономических выкладок.
На базе узкопрофильных модулей, необходимых для специализированных действий в той или иной сфере деятельности.
Интегрированные программные обеспечения, включающие в себя все предыдущие виды. Они сложнее в управлении, но обеспечивают широкий охват возможностей.
САПР программа для 3D проектирования ZWSOFT
Примеры САПР-программ: системы автоматизированного проектирования в действии
Расскажем о наиболее популярных платформах, их плюсах и минусах.

Автокад
Еще недавно он занимал первую позицию на рынке систем конструирования. Софт был разработан еще в 1982 году американскими учеными, он сразу стал популярным, тем более, что на тот момент был уникальным средством компьютерного моделирования. AutoCAD предлагает возможности для инженеров всех сфер, в ее комплектации есть как широкий спектр инструментов, так и специальные модули для узкой профилизации, чтобы не загромождать интерфейс. Таким образом, можно купить наиболее удобную для работы версию. Другой вопрос – в какую сумму это обойдется.
Являясь самой популярной программой во всем мире, Автокад переведен на 18 языков, в частности, на русский. Нашим специалистам понятно все, кроме необходимой инструкции по применению. В своем арсенале продукт имеет десятки разновидностей и тысячи надстроек и модулей. Почему же сейчас все чаще ищут аналог этой системы САПР?

У платформы есть как верные защитники, так и противники. Для первых все приписываемые минусы – это лишь результат недостаточного освоения программы. Вторая группа видит следующие минусы:

Неудобная работа с таблицами. Привычные текстовые редакторы дают больше возможностей использовать этот примитивный способ передачи информации.
Трудность в освоении софта: большой функционал не всегда пригождается каждому пользователю, однако, загромождает интерфейс и приводит к путанице.
Невозможность корректного импортирования чертежей, выполненных в Автокаде, в другие ПО. Это не дает пользователем возможность продолжить работу с другого компьютера, на котором установлена другая система.
Производители уделяют много времени и сил на создание новых надстроек, однако, интерфейс побочных модулей зачастую не проработан.
Основным недостатком является завышенная ценовая политика. Для многих инженеров стоимость Автокада остается запредельной. Тем более редко его устанавливают студенты и начинающие проектировщики. Крупным компаниям тоже становится выгоднее покупать лицензии у производителей с хорошей системой корпоративных скидок.
Таким образом, появляется необходимость в поиске лучшего САПРа, который должен отвечать ряду требований:

оптимальный расширенный функционал, не уступающий возможностям популярного продукта;
приятный и удобный внешний вид, понятный интерфейс, удачное расположение инструментария;
нетрудная система обретения лицензии и последующего продления;
возможность обновлений и добавления профильных надстроек с расширенным специализированным комплектом функций;
легкое импортирование из одной программы в другую, совместимость форматов редактирования;
невысокая цена и система корпоративных скидок.

28.05.2020г Урок английского языка 8гр

Экскурсия по родному городу/селу.

цель: 1) совершенствование навыков монологической речи

2) тренировка грамматических навыков

3) активизация лексических навыков

1. Прочитать , перевести .

I live in Kirov. This is my home town. Kirov (which was known as Vyatka at the beginning of the 20th century) is located in the north-east of Russia, and it is an administrative, economic, educational and cultural center of Kirov region. My town is neither small, nor too big. Its population is slightly less than 500 thousand people.

Of course, Kirov is not an ideal place to live. Most people who come to my town for the first time say that it is grey, dirty and miserable. They get irritated with narrow streets and poor roads quality. And finally, they say that life in such a place should be rather depressing. Certainly, I am well aware of all the problems of my town. And still I think everything is not so bad. Despite all the issues mentioned, Kirov has got some specific features that make me love it. And I want to tell about these features.

2. Выполнить задания .
Упражнение. Complete what Brenda says about herself on the picture. Use am, is or are.

My name (1) ______ Brenda Foster. I (2) ______ on the left in the picture. I (3) ______ ten years old and I (4) ______ in the fifth form. My birthday (5) _____ on the first of January. I (6) ______ from Santa Monica, California, USA. I (7) ______ American. My phone number (8) ______ 235-456-789. I live at 16 Park Street. My post code (9) ______ LA 30 SM. I’ve got a sister and a brother. Their names (10) ______ Gina and Paul. Gina (11) ______ 16 years old and Paul (12) ______ only three. I’ve also got a dog. His name (13) ______ Spot. He (14) ______ on the right in the picture. My Mum (15) ______ a doctor. She works at a hospital. My Dad (16) ______ a driver. He works in Los Angeles. We (17) ______ all friendly in our family.

21.05.2020г урок английского языка 8 гр

Тема: Путешествие по миру. Путешествие автостопом.

Цель урока: Совершенствование лексико – грамматических навыков; развитие творческих умений; воспитание норм речевого этикета.

1.Записать,выучить.

Travelling. General Words (общие слова)
1. travelling / travel — путешествие
2. to be fond of travelling — любить путешествовать
3. journey — длительное путешествие ( по суше)
4. trip/ school trip — поездка (короткая)/ экскурсия
5. two-day trip — двухдневная поездка
6. tour — поездка/ тур
7. package tour — путешествие по тур. путевке
8. to buy a package tour — купить тур. путевку
9. cruise [kru:z] — круиз
10. voyage [`voɪəʤ] — путешествие по морю
11. to drive/ go for a drive — поездка на машине/ прокатиться
12. flight — полет/ рейс
13. hitchhike — путешествие автостопом
14. to go hitchhiking — отправиться в путешествие автостопом
15. to go on a journey / cruise/school trip — отправиться в путешествие/ круиз/ на экскурсию
16. travel agency — туристическое агентство

Запомните несколько предложений, содержащие устойчивые сочетания.
If you keep driving that fast, you will have an accident. — Если ты будешь продолжать ехать так быстро, ты попадешь в аварию.
I haven’t exercised for years, I can’t even remember how to get on a bike. — Я несколько лет не ездил на велосипеде, я даже на помню, как на него садиться.
It is really busy time to travel. We need to make a reservation. — Сейчас действительно высокий сезон. Нам нужно зарезервировать место заранее.

2. Выполнить упражнение .
Travelling. Упражнения для закрепления лексики
Упражнение 1. Match the words from two lines to make 10 collocations (pair words):

(1) passport, ticket, overhead, information, catch, emergency, life, board, non-smoking, hand

(2) a plane, bag, jacket, locker, compartment, control, collector, exit, desk, a buу

Основы термодинамики

Гидравлика

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ
Основные понятия и определения
Термодинамика — наука, которая изучает энергию и законы ее превращения из одного вида в другой.

Раздел термодинамики, в котором рассматриваются взаимопревращения тепловой и механической энергии с помощью рабочих тел, называется технической термодинамикой.

Техническая термодинамика является основой теории тепловых двигателей и других энергетических установок, так или иначе связанных с взаимопревращениями указанных видов энергии.

Из курса физики известно, что молекулярное строение вещества предполагает наличие сил сцепления (притяжения и отталкивания) между непрерывно движущимися молекулами. В твердом теле расстояние между молекулами весьма мало, а силы сцепления настолько значительны, что движение молекул крайне ограниченно, и поэтому объем тела остается практически неизменным. Для изменения формы твердого тела требуется приложить значительные усилия, намного превосходящие силы сцепления молекул.

В жидкостях расстояния между молекулами значительно больше и силы сцепления слабее, нежели в твердом теле, поэтому жидкость, обладая текучестью, способна принимать любую форму в зависимости от геометрии сосуда, в котором она содержится. Однако силы сцепления молекул в жидкости все же значительны, и объем ее практически остается неизменным, что и обусловливает несжимаемость жидкостей. Что же касается газов (паров), то силы сцепления молекул в них ничтожно малы, поэтому газ не имеет ни постоянной формы, ни постоянного объема. Как известно, газ занимает любой предоставленный ему объем и любую форму сосуда, в котором он помещен.

Здесь уместно ввести понятие об идеальном газе, молекулы которого обладают ничтожно малыми объемами, лишены сил сцепления и непрерывно совершают хаотическое движение. Ко многим реальным газам (например, водород, гелий, кислород, азот, воздух и многие другие) при обычных условиях могут быть применены законы идеальных газов.

Преобразование теплоты в механическую работу происходит с помощью рабочего тела. Наиболее эффективные рабочие тела обладают резко выраженными упругими свойствами, позволяющими в значительной мере деформироваться (изменять свой объем) под влиянием механических сил (давления), термических воздействий (теплоты, температуры) или комбинированных термомеханических воздействий.

Наблюдая за поведением тел в природе в их различных агрегатных состояниях, можно заметить, что наиболее целесообразно в качестве рабочих тел в различных тепловых устройствах использовать газы или пары. Именно они наиболее эффективны в процессах преобразования теплоты в механическую работу, так как, с одной стороны, легко деформируемы (легко сжимаются, расширяются) под влиянием внешних сил, а с другой стороны, имеют значительные (по сравнению с другими агрегатными состояниями тел) по величине коэффициенты объемного расширения.

Одним из основных в технической термодинамике является понятие о термодинамической системе, представляющей собой совокупность тел, находящихся во взаимодействии как между собой, так и с окружающей средой. Простым примером термодинамической системы может служить газ, расширяющийся или сжимающийся в цилиндре с движущимся поршнем.

Материальные тела, входящие в термодинамическую систему, разделяют на источники теплоты и рабочие тела, которые под воздействием источника теплоты совершают механическую работу.

Для определения конкретных физических условий, в которых находится термодинамическая система, используется ряд показателей, называемых параметрами состояния. В число основных параметров входят: абсолютная температура Г, абсолютное давление р и удельный объем v (или величина, обратная удельному объему — плотность р).

Последовательность изменения состояния рабочего тела в термодинамической системе называют термодинамическим процессом. Основным признаком процесса является изменение хотя бы одного из параметров состояния.

Давление (р) в термодинамике определяется как сила, действующая по нормали на единицу поверхности тела. Давление измеряют в ньютонах на квадратный метр (Н/м2).

Различают абсолютное и избыточное давления. Под абсолютным понимают действительное давление рабочего тела внутри сосуда. Под избыточным давлением понимают разность между абсолютным давлением в сосуде и давлением окружающей среды. Прибор, служащий для замера этой разности давлений, называют м а- нометром.

Из приведенных выше определений следует, что для случая, когда давление в сосуде превышает давление окружающей среды,

где рл — абсолютное давление в сосуде; рм — манометрическое давление; р6 — давление окружающей среды (барометрическое давление).

Если абсолютное давление меньше давления окружающей среды, то разность между ними называют разрежением, или вакуумом. Для измерения его служит вакуумметр — прибор, показывающий разность давления окружающей среды и абсолютного давления газа в сосуде. В этом случае

где рв — разрежение.

Для измерения небольших давлений пользуются жидкостными приборами, заполненными водой, ртутью или другой жидкостью.

В системе СИ за единицу давления принят один паскаль (Па), причем 1 Па = 1 Н/м2.

В теплотехнических установках приборы чаще всего градуированы в системе МКГСС, в которой за единицу давления принята атмосфера (ат): 1 ат = 1 кгс/см2 = 104 кгс/м2.

Так как 1 кгс = 9,8 Н, то 1 ат = 9,8 • 104 Н/м2 = 9,8 • 104 Па, или 1 ат = 98 кПа = 0,098 МПа, а с округлением 1 ат = 0,1 МПа.

Следует также отметить, что рабочее тело находится при нормальных физических условиях, если давление его равно 1 атм (р0 = 760 мм рт. ст. или 101 325 Н/м2), а температура /0 = 0 °С.

Нормальные технические условия соответствуют давлению в 1 ат (р0 = 735,6 мм рт. ст. или 98 066 Н/м2) и /0 = 15 °С.

В технике используются и другие соотношения между единицами давления:

1 бар = 10s Н/м2 = 750 мм рт. ст.;
1 ат техн. (кг/см2) = 9,8 • 104 Н/м2 = 10 000 кг/м2 = 10 000 мм вод. ст.
Под удельным объемом рабочего тела понимают объем, занимаемый этим телом массой в 1 кг. Удельный объем обозначают буквой v и измеряют в кубических метрах на килограмм (м3/кг).

Под плотностью рабочего тела понимают величину, обратную удельному объему, т. е. массу вещества объемом в 1 м3. Плотность обозначают буквой р и измеряют в килограммах на кубический метр (кг/м3). Из приведенных определений следует:

поэтому

Здесь V— объем рабочего тела, м3; М— масса рабочего тела, кг.

Уравнение (1.1) обозначает, что плотность и удельный объем являются величинами, обратными друг другу.

Абсолютная температура является одним из основных параметров, характеризующих тепловое состояние тела, и мерой степени нагретости тела. Знак разности температур двух неодинаково нагретых тел определяет направление передачи теплоты. Температуру измеряют либо по абсолютной шкале в Кельвинах (К) и обозначают буквой Т, либо по Международной стоградусной шкале в градусах Цельсия (°С) и обозначают буквой /. Единица деления шкалы Кельвина равна градусу шкалы Цельсия. Соотношение между величинами Г и Г определяется формулой:

В США, Канаде и некоторых других странах применяется шкала Фаренгейта, в которой за 0 принята температура смеси равных частей льда и нашатыря. В этой шкале температура таяния льда равна +32 °F, а температура кипения химически чистой воды равна +212 °F. Соотношение будет

Посмотреть оригинал
< Пред СОДЕРЖАНИЕ ОРИГИНАЛ След >
второй ОСНОВЫ ТЕПЛОТЕХНИКИ
Основные положения технической термодинамики Основные понятия и определения Термодинамика является наукой, в которой изучаются энергия и законы превращения ее из одних видов в другие. Раздел этой науки, в котором рассматриваются взаимопревращения тепловой и механической энергии с…
(ОБЩАЯ ЭНЕРГЕТИКА. ОСНОВНОЕ ОБОРУДОВАНИЕ)
КЛИМАТОЛОГИЯ И ТЕПЛОТЕХНИКА
Климатология и дизайн Климатология — наука, призванная раскрыть связи между климатическими условиями и архитектурой зданий и дизайном интерьеров. Овладение этими связями позволяет дизайнеру при проектировании правильно оценить и учесть климатические воздействия, создать в формируемой им…
(АРХИТЕКТУРНАЯ ФИЗИКА)
Теплотехника и дизайн
Теплотехника — наука, которая изучает методы получения, преобразования, передачи и использования теплоты, а также принципы действия и конструктивные особенности тепловых машин, аппаратов и устройств. Способы теплопередачи и виды отопительных приборов Способы теплопередачи. Теплота — кинетическая…
(АРХИТЕКТУРНАЯ ФИЗИКА)
Задания, методические указания и примеры расчетов оборудования для выполнения курсовых работ. Методические указания по выполнению лабораторных работ для студентов бакалавриата по направлению подготовки 13.03.01 — «Теплоэнергетика и теплотехника»
Курсовая работа выполняется по заданию, выдаваемому преподавателем. Номер задания выбирается в соответствии с учебным шифром студента. Для выполнения курсовой работы ниже приведены методические указания. Примеры расчетов оборудования приведены в приложениях 1, 2, 3, 4. Указания и алгоритмы выполнения…
(Тепломассообменное оборудование предприятий)
Основные положения технической термодинамики
Основные понятия и определения Термодинамика является наукой, в которой изучаются энергия и законы превращения ее из одних видов в другие. Раздел этой науки, в котором рассматриваются взаимопревращения тепловой и механической энергии с помощью тел, именуемых рабочими телами, называется…
(ОБЩАЯ ЭНЕРГЕТИКА. ОСНОВНОЕ ОБОРУДОВАНИЕ)
ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ
Понятие о термодинамической системе Одним из основных в технической термодинамике является понятие о термодинамической системе, которая представляет собой совокупность тел, находящихся во взаимодействии как между собой, так и с окружающей средой. Простым примером термодинамической системы…
(Теоретические основы теплотехники)
Основные положения неравновесной термодинамики
В последние десятилетия классическая термодинамика, рассматривающая идеальные равновесные условия, при изучении реальных процессов, происходящих в климатической системе Земли, в химических и биологических системах уступает место неравновесной термодинамике или термодинамике необратимых…
(ОКЕАНОЛОГИЯ: ОСНОВЫ ТЕРМОДИНАМИКИ МОРСКОЙ ВОДЫ)
ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА ЭЛЕКТРООБОРУДОВАНИЯ И СРЕДСТВ АВТОМАТИЗАЦИИ
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ, ТЕКУЩИЙ И КАПИТАЛЬНЫЙ РЕМОНТЫ ОБОРУДОВАНИЯ Для получения высоких производственных показателей необходимо организовать рациональную эксплуатацию электроустановок. Лучшие результаты получаются, если проводить эту работу по системе планово-предупредительного ремонта и технического…
(ЭКСПЛУАТАЦИЯ И РЕМОНТ ЭЛЕКТРООБОРУДОВАНИЯ И СРЕДСТВ АВТОМАТИЗАЦИИ)

Схемы

Механизация

Инженерная графика
Связь с преподавателем
§ 108. Выполнение схем
Графический документ, на котором показаны в виде условных изображений и обозначений составные части изделия и связи между ними в соответствии с ГОСТ 2.102-68, называют схемой.

Виды и типы схем, общие требования к их выполнению регламентируются ГОСТ 2.701-84.

Схемы облегчают изучение устройства изделия. В зависимости от видов элементов, входящих в состав изделия, и связи между ними схемы разделяют на электрические (Э), гидравлические (Г), пневматические (П), кинематические (К), оптические (Л) и др.

В зависимости от основного назначения схемы разделяют на следующие типы: структурные (1), функциональные (2), принципиальные (3), соединений (4), подключения (5) и т.д.

Структурная схема определяет основные функциональные части изделия, их назначение и взаимосвязь.

Функциональная схема разъясняет процессы, протекающие в отдельных функциональных цепях изделия или в изделии в целом.

Принципиальная (полная) схема определяет полный состав элементов и связей между ними в изделии, дает детальное представление о принципах работы изделия.

Схема соединений (монтажная) показывает соединения составных частей изделия и определяет провода, кабели, трубопроводы, осуществляющие эти соединения, а также места их присоединения.

Наименование схемы определяется ее видом и типом, а шифр схемы состоит из буквы, определяющей вид схемы, и цифры, обозначающие ее тип. Например, схема электрическая принципиальная имеет шифр Э3. Если приведена схема, у которой в обозначении записан шифр К1, это означает, что выполнена схема кинематическая структурная.

Схемы выполняются без соблюдения масштаба. Линии связи проводят толщиной 0,2…0,4 мм, стараясь избежать большого числа их пересечений и изломов. Расстояние между соседними параллельными линиями связи должно быть не менее 3 мм.

Если в условных графических обозначениях имеются утолщенные линии, то их вычерчивают в два раза толще линий связи.

Элементы схемы, составляющие функциональную группу или устройство, не имеющие самостоятельной принципиальной схемы, допускается выделять штрихпунктирными линиями, толщина которых равна толщине принятых линий связи. На схеме указывается наименование этих групп, например коробка скоростей, суппорт и т.п.

Элементы схемы, составляющие устройство, имеющие самостоятельную принципиальную схему, выделяют на общей принципиальной схеме сплошной тонкой линией, равной по толщине линиям связи.

На схеме допускается помещать различные технические данные, характеризующие схему в целом и отдельные ее элементы. Эти сведения помещают или около графических обозначений, или над основной надписью.

Электрические принципиальные схемы (Э3) выполняют в соответствии с ГОСТ 2.702-75. Обозначения в электрических схемах установлены ГОСТ 2.721-74… ГОСТ 2.791-74.

Схемы вычерчивают в отключенном состоянии. Условные знаки на схеме вычерчивают в положении, в котором они изображены в соответствующем стандарте, или повернутыми на угол, кратный 90°, по отношению к этому положению.

Все элементы на схеме должны быть определены однозначно. Для этого данные об элементах записываются в таблицу (рис. 366), которая заполняется сверху вниз и помещается на первом листе или выполняется в виде самостоятельного документа на формате А4.

Рис. 366

Каждый элемент схемы должен иметь позиционное обозначение, которое включает в себя буквенное обозначение и порядковый номер (рис. 367). Буквенное обозначение: резистор — R, конденсатор — С, катушка индуктивности — L, амперметр — А, вольтметр — V, генератор — Г, диод полупроводниковый — Д, дроссель -Др, кнопка — Кн, прибор электронный — Л, двигатель (мотор) — М, предохранитель — Пр, реле — Р, триод полупроводниковый — Т, трансформатор — Тр и т.д.

Рис. 367

Позиционные обозначения наносят рядом с условным знаком справа от него или над ним. Порядковый номер присваивается в соответствии с последовательностью расположения элементов сверху вниз и справа налево.

Элементы записываются в таблицу группами в порядке расположения их в приложении к ГОСТ 2.702-75, т.е. вначале записывают резисторы, потом — конденсаторы, катушки индуктивности, амперметры и т.д. В пределах каждой группы элементы располагают по возрастанию позиционных номеров. Элементы одного типа с одинаковыми электрическими параметрами, имеющие на схеме последовательные порядковые номера, допускается записывать в графе «Поз.» в одну строчку, по типу: С1…С4, а в графе «Кол.» — общее количество таких элементов.

На схеме рекомендуется указывать характеристики входных и выходных цепей изделия: частоту, напряжение, силу тока и т.п., а также параметры, подлежащие измерению на контрольных контактах, гнездах и т.п. Характеристики входных и выходных цепей изделия записывают в виде таблицы.

На поле электрической принципиальной схемы допускается помещать указания о марках, сечениях и расцветках проводов и кабелей, а также указания о специфических требованиях к электромонтажу изделия.

Кинематические принципиальные схемы (К3) показывают последовательность передачи движения от двигателя через передаточный механизм к рабочим органам или инструментам, а также дают возможность судить о способах их регулирования, контроля, управления ими.

Выполняются кинематические схемы в соответствии с ГОСТ 2.703-68. На кинематической схеме показываются все кинематические элементы изделия, отражаются кинематические связи механического и немеханического типа между различными элементами и группами элементов изделия, показывается связь механизма с двигателем.

Элементы кинематических схем обозначаются условно по ГОСТ 2.770-68. К кинематическим элементам относятся валы, оси, подшипники, муфты, тормоза, шкивы, зубчатые колеса, червячные передачи и т.п.

Кинематическая схема вычерчивается в виде развертки и не дает пространственного (объемного) расположения составных частей изделия. При сложной пространственной кинематике схему рекомендуется изображать в аксонометрических проекциях.

На кинематической схеме можно расположить схему другого вида, непосредственно влияющую на работу изделия.

Каждому кинематическому элементу присваивают порядковый номер, начиная от двигателя. Порядковый номер проставляют на полке линии-выноски, а под полкой указывают основные характеристики и параметры кинематического элемента. Валы нумеруют римскими цифрами, остальные элементы — арабскими.

Условные знаки на схеме вычерчивают, не придерживаясь масштаба изображения. Однако при повторении одних и тех же знаков выполнять их нужно одинаково. Соотношение размеров условных знаков должно примерно соответствовать действительному соотношению их размеров.

Взаимное расположение элементов на кинематической схеме должно соответствовать исходному, среднему или рабочему положению исполнительных органов. Крайние положения движущихся элементов показывают тонкими штрихпунктирными линиями.

Валы, оси, стержни на кинематических схемах изображают сплошными основными линиями толщиной S; элементы, изображенные внешними очертаниями, зубчатые колеса, червяки, звездочки, шкивы, кулачки — сплошными линиями толщиной S/2; контур изделия, в который вписана схема — сплошными тонкими линиями толщиной от S/3 до S/2.

На кинематических схемах допускается указывать: наименования каждой группы элементов, имеющей определенное функциональное значение; основные характеристики и параметры кинематических элементов (для двигателя — тип, мощность, скорость вращения, для зубчатых колес — число зубьев и модуль и т.д.); справочные и расчетные данные в виде графиков, диаграмм, таблиц.

Если в схеме есть зубчатые передачи, то колеса считаются как бы прозрачными, и условно предполагается, что они не закрывают друг друга.

Читать кинематическую схему начинают от двигателя, выявляя последовательно по условным обозначениям каждый элемент кинематической цепи, устанавливая его значение и характер передачи движения. Чтение схемы рекомендуется начинать с изучения паспорта данного механизма. На рис. 368 изображена кинематическая схема коробки скоростей токарного станка.